<u>CHEM1 - Foundation Chemistry</u> <u>Definitions to Learn</u>

1. Formulae & Equations

Atomic number	number of protons in the nucleus of an atom
Mass number	sum of the protons and neutrons in the nucleus of an atom
Isotopes	atoms with the same number of protons but different numbers of neutrons
Empirical formula	simplest whole number ratio of the atoms of each element in a compound
Molecular formula	actual number of atoms of each element in a molecule
Atom economy	mass of desired product x 100% total mass of reactants

2. Mass Spectrometry & Electronic Structure

Relative atomic mass	average mass of an atom relative to 1/12 of the mass of a carbon-12 atom
Relative molecular mass	mass of a molecule relative to 1/12 of the mass of a carbon- 12 atom

3. <u>Moles</u>

Mole	unit for amount of substance
Avogadro constant, N _A	number of particles present in a mole (6.02 x 10 ²³ mol ⁻¹)

4. Bonding & Periodicity

Lattice	a regular 3-dimensional array
Ionic bond	electrostatic attraction between oppositely charged ions in a lattice
Covalent bond	a shared pair of electrons
Dative covalent bond	covalent bond formed by donation of a lone pair
Metallic bond	a lattice of positive ions surrounded by delocalised electrons
Electronegativity	ability of an atom to attract the electrons in a covalent bond
Polar bond	electrons are shared unequally (due to difference in electronegativity of atoms at either end)
1 st ionisation energy	energy change when one mole of electrons is removed from one mole of gaseous atoms

5. <u>Alkanes</u>

Homologous series	 a series of organic compounds with: the same general formula difference of CH₂ between each member a trend in physical properties similar chemical properties
Functional group	a group of atoms responsible for the characteristic reactions of a compound
Structural isomers	same molecular formula, different structures
Hydrocarbon	a compound that contains hydrogen and carbon only
Saturated	contains only single C-C bonds
Fractional distillation	separates due to differences in boiling point
Fraction	mixture of compounds of similar boiling point
Cracking	breaking a long chain alkane into a shorter chain alkane and an alkene

<u>CHEM1 - Foundation Chemistry</u> <u>Calculations</u>

1. Formulae & Equations

Molar mass*	Sum of masses of elements in formula <i>e.g. 106.0 for Na₂CO₃ (always give to 1 dp)</i>
Percentage by mass	Mass of specified element x 100% Molar mass e.g. 43.4% for Na in Na ₂ CO ₃
Empirical formula	For each element, divide percentage by relative atomic mass Divide through by smallest If result is, say, 1 1 1.5, then double to get whole numbers. Do not round 1.5 to 2
Molecular formula	Divide relative molecular mass by mass of empirical formula to get multiplier. Multiply empirical formula by multiplier.
Atom economy	Mass of desired product x 100% Total mass of reactants

* (also applies to relative atomic mass, relative molecular mass & relative formula mass)

2. <u>Mass Spectrometry & Electronic Structure</u>

Relative atomic mass	For each isotope, calculate mass number x abundance. Add results together. Mass number may come from m/z scale of graph. Abundance can be %/100 or line height/total line height.
3. <u>Moles</u>	
Moles	If given mass in g, moles = mass/molar mass If given concentration in mol dm ⁻³ and volume in dm^3 , moles = concentration x volume If given concentration in mol dm ⁻³ and volume in cm^3 , moles = concentration x volume/1000
Percentage yield	Actual moles x 100% Possible moles
Percentage purity	Mass of pure or desired x 100% Mass of impure or mixture
Concentration in g dm-3	Mol dm ⁻³ x molar mass
Dissolved mass	Concentration in g dm ⁻³ x volume in dm ³
Ideal gas equation	PV = nRT
	P=pressure in Pa, V=volume in m ³ , n=number of moles, R=gas constant (8.31 J K ⁻¹ mol ⁻¹), T=temperature in K 1kPa = 1000 Pa, 1 cm ³ = 10 ⁻⁶ m ³ , 1 dm ³ = 10 ⁻³ m ³ , K = °C+273